



HW 02

Due Monday, 6 PM
- what if I'm not in my office?

- See Website after Class!!
- Ex Cr: One litre of red dye molecules is dumped in the ocean from a bottle. The ocean is given a really good stir and one litre of the well-mixed seawater is scooped up in the bottle. About how many dye molecules will now be in the bottle?

Metric Prefixes	exa	E	1 000 000 000 000 000 000	1018
	peta	Р	1 000 000 000 000 000	10 ¹⁵
	peta tera giga mega kilo hecto deca (none) (n deci centi milli micro nano pico	Т	1 000 000 000 000	10 ¹²
	giga	G	1 000 000 000	10 ⁹
	mega	M	1 000 000	10 ⁶
	kilo	k	1 000	10 ³
	hecto	h	100	10 ²
$[10^9 = \text{billion vs. } 10^{12} = \text{million}]$	deca	da	10	10 ¹
	(none)	(none)	1	10 ⁰
	deci	d	0.1	10 ⁻¹
	centi	С	0.01	10 ⁻²
	milli	m	0.001	10 ⁻³
	micro	μ	0.000 001	10 ⁻⁶
	nano	n	0.000 000 001	10 ⁻⁹
	pico	p	0.000 000 000 001	10 ⁻¹²
	femto	f	0.000 000 000 000 001	10 ⁻¹⁵
	atto	а	0.000 000 000 000 000 001	10 ⁻¹⁸

Derived Units

- Derived units are combinations of Base Units for other physical quantities
- Examples:
 - Speed: m/s, Acceleration: m/s²
 - Force: $1 N = 1 Newton = kg m/s^2$
 - Energy: 1 J = 1 Joule $= 1 \text{ kg m}^2/\text{s}^2$
 - Electric Field: 1 N/C= 1 (kg m)/(A s³)

See inside front cover of the text!

Unit Conversion

- How many seconds are in a year?
- 80 miles is how many meters?
 Kilometers?

Note use of scientific notation!!

Dimensional Analysis

- Often we can make reasonable calculations of quantities by examining the units (dimensional analysis) and finding a way to combine them to get what we want.
- Examples:
 - It's 80 miles to South Bend. If a car gets 24 mpg, how many gallons will it take to get there? If gas costs \$2.60 per gallon, how much will the trip cost?
 - U.S. "proved" oil reserves are estimated (2017) to be about 39.2 billion bbl (bbl = barrels). How many years will these reserves last at our current consumption rate of about 20.45 million bbl/day (2018 data)?

Have a nice weekend

